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Abstract

Certain mathematical systems: complex algebra, Gibbs vectors (1881) and Sylvester's
matrices (1850), have wide applications in physics, engineering and chemistry. However
there were many siblings (Hamilton's Quaternions 1843, Grassmann's Algebra of
Extension 1844, Cayley's Octonions 1845) that fell into obscure disuse but have recently
found new applications which we will review. In particular, William Kingdon Clifford
proposed (1876) a universal geometric algebra which combined features of all the above.
Due to his untimely death this extraordinary system, in which one can add a vector to a
scalar to a plane, was ignored for nearly 100 years. Recent revival (last 20 years) has
shown that undergraduates can more quickly learn and apply Clifford vectors than Gibbs
vectors; becoming quite excited with the interpretation of "i" as the volume of 3 space,
seeing "planes™ as things that cause rotations (or Lorentz transformations), and being able
to do divergence, curl and gradient in a single equation. New extensions of a generalized
geometric calculus hold promise for completely new approaches to unified physical
theories.

This will be a very general talk, of interest to undergraduates (I myself was introduced to
the subject as a sophomore, and was captivated by the insights it gave that | found
nowhere else).
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[1.A. Complex Algebra

* 1. The Complex Plane A
* : I\

— (a) Imaginary: i°=-1 = .
1545 Cardan “Useless Roots = = ’(;i
1637 Descartes “imaginary” <
831 Gauss: complex number %

— (b) 2D Space g - & |
1673 John Wallis . real %

1793 Casper Wessel
1821 Cauchy “complex plane”

- (c) Rﬂtatinn_s in 2D
1743 Euler: E'“zcnsgﬂi sing
l 1806 Argand: z' =" z _7

e 2. Analysis

— (a) Complex Functions =ataVe-4 b
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* 3. Integration
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g

— (a) Cauchy Integral Theorem
g f@)dz = O ‘
= =
X

— (b) Cauchy Kernel k(2 z)- _|
J ‘) "'2}?1: (Z'izn)

é k(z2) Edz = f(z)

— (c) Generalizations for non-analytic
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B8.%. Quaternions

Sir William
Rowan Hamilton
1805-1865

i2=j2=k2=ijk=-1

Famous equation,
carved in Brougham
Bridge Oct 6, 1843.
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A3 Rotations /
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(A) Quaternionie Analyss

(A) Functions of g uatemion Coorelerate
ore really 4D (Carfesian)
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Cayleys Octonions  (7ssr)

* There are 480 different ways to write an octonion multiplication
table. Here is a geometric representation of the way preferred by
Creoffrey Dixon:

=1
(E)=-1 s%0

i 63: _'{:J lfi5{.

Non- as cocntfive

@tis)t = alb C')

* In the heptagon of imaginary octonions {¢l,e2.e3,e4,e5,e6.¢7},
there are 7 triangles (6 colors and 1 black). The product of any
wo imaginary octonions is the third imaginary octonion in their
triangle, with + sign if the product is a clockwise rotation and -
sign i counterclockwise. The algebraic rule for this product is
determined by e(a)e(a+1) = e(a+5). If (a+5) is greater than 7, use
(a-7).

* Hurwitz’ theorem (1898) that any normed division algebra over
R, with unit element, is isomorphic to R,C, H{quaternions) or
O{octonions).
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f.c2Types of Algebras

Complex Field: C

Abelia Real Field: R MO
. 5 [e“e]]=gmek

AQB=BRA

Matrix Algebra ' Gibbs Vectors
_ Cayley Dyadics
Non- | (" ciifford Algebra Ty
- : non-1sotropic tsotropic f [ e. e ] =C.,.e
: . | ifk © k
Abelian (i lﬁrmm .
Pauli Matrices | Differential :
Dirac Matrices | Forms ' Cayley Octonions
(AB)C=A(BC) NON-Associative
[ L] L]
Associativity
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III. Geometric Algebra

A. Gibbs Vectors (1881)

1. Gibbs Vector Algebra
2. Coordinate free & Isotropic properties
3. The Vector-Quaternion Debate (1891-4)

B. Grassmann’s Algebra

1. Grassmann’s Extended Quantities
2. Hodge Dual, the Dot Product
3. Differential Forms, Stokes Theorem

C. Clifford Algebra

1. The Clifford Group, Matrix Representation
2. Adding Vectors to Planes
3. Geometric Calculus
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Ir.A.l

J. Willard Gibbs (1839-1903)

“America’s First
Theoretical Physicist™

appointed Prof. of Math
Physics, Yale 1871
without pay until 1880!

“But 1 do not so much desire to call your attention to the diversity of
the applications of multiple algebra, as to the simplicity and
unity of its principles. The more we study the subject, the more
that we find all that is most useful and beautiful attaching itself
to a few central principles. We begin by studying multiple
algebras; we end, I think, by studying Multiple Algebra.” -
(1883) presidential address given to the American Association
for the Advancement of Science.
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mas Yectors versus Quate-rnions

Reference: A. M. Bork, American Journal of Physics, 34, 202-211 (1966).

As his work on the Treatise progressed, Maxwell wrote of the quaternion as
*a flaming sword”, the virtue of which lay “in enabling us to see the
meaning of the question and its solution™ which struggling with physical
problems. Elsewhere he states that *he had been striving all his life to be
freed from the yoke of the Cartesian coordinates, and had found such an
instrument in the Hamiltonian quaternions.’

1890 Maxwell writes (volume 2) A most important distinction was drawn
by Hamilton when he divided the quantities with which he had to do into
Scalar quantities, which are completely represented by one numerical
quantity, and Vectors, which require three numerical quantities to define
them. The invention of the calculus of Quaternions is a step towards the
knowledge of quantities related to space which can only be compared for
its importance, with the invention of triple co-ordinates by Descaretes.
The ideas of this calculus, as distinguished from its operations and
symbols, are fitted to be the greatest use in all parts of sicence.”

Peter Gurthrie Tait (student of Hamilton) in preface to third edition of
Hamilton's Quaternions, says of Gibbs vectors: “... a sort of
hermaphrodite monster, compounded of the notations of Hamilton and
(irassmann’.

1892, Lord Kelvin in a letter states: “Quaternions came from Hamilton after
his really good work had been done; and, though beautifully ingenious,
have been an unmixed evil to those who have tounched them in any way
including Clerk Maxwell.”

Aprl 1893, O. Heaviside: A vector is not a quaternion; it never was, and
never will be, and its square is not negative; the supposed proofs are
perfectly rotten at the core.” He goes on to give Professor MacAulay,
who is a “quaternionist”, some advice, “A difficulty in the way is that he
has got used to quaternions. 1 know what it is, as | was in the
quaternionic slough myself once. But I made an effort, and recovered
myself, and have little doubt that Prof. MacAulay can do the same.”
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William Kingdom Clifford (1845-1879)

I hold in fact:

(1) That small portions of space are in fact of a nature
analogous to little hills on a surface which is on the
average flat; namely, that the ordinary laws of geometry
are not valid in them.

(2) That this property of being curved or distorted is
continually being passed on from one portion of space to
another after the manner of a wave.

(3) That this vanation of the curvature of space is what
really hg%pens in that phenomenon which we call the
motion of matter, whether ponderable or etherial.

(4) That in the physical world nothing else take place but
this variation, subject (possibly) to the law of continuity.

“On the Space-Theory of Matter’
Proceedings of the Cambridge Philosophical Society (18786).
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NUMBER OF POSITIVE METRIC DIMENSIONS

MATRIX REPRESENTATION VS, METRIC

NUMBER OF NEGATIVYE METRIC DIMENSIONS
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IV. Physical Applications

A. Unified Language

+ 1. Tower of Mathematical Babel
+ 2. Example of Derivation of Characteristics
» 3. Other examples

B. Dimensional Democracy

1. Clifford Algebra’s Automorphism Invariance
« 2. Differential Multiforms
« 3. Papapetrou Equation new derivation

C. Generalized Curvature

» 1. Pan-Dimensional Curvature
2. The Metamorphic Connection
= 3. Polygeodesics
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Comparison of Derivations of Characteristic

Hypersurfaces of Maxwell’s Equations in 3D

Gibbs Vectors Clifford Algebra

Alder, Bazin and Schiffer, Intro to Pezzaglia, in Lawrynowice, Delormations
General Relativity (MoGiraw-Hill of Mathematical Structures IT {1994),
1963), pp. 108-112. pp. 129-134; hep-th/9211062
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(4.99) |!_£ —exftL %"ﬂkl:'fﬁﬂ By — %E{ﬂl}t -Thx (T xl)
(4,33 %H +oxk4 %r.h:'rh-}n - %H{rh}* -Thx (v xh)
Tinally, substituting Trom (4.23) and (429}, we et

(.00} lE— vx H 4+ vhivh:- T xH) -:E:rh}f ~vhxivxE

{4.33) %'H+rxt—t'ﬁl[ﬁt-'¢!ﬂ]-%1ﬁfh}l-'Fh'.u:[".'" ¥ H) i

vV

Bcacraigensent now pives ihe two key relations that woe hove boen
woarkiiag tevrnrd:

30 1= (PAIE = v x B = FA(TH- v % B) + VA (7 % E)

A &
{£.37) guumjr}ﬂ--vut+vammx£:+ﬂ£w » ¥0) G?h + [)VF :((Fh)?; | JF

& = v:EH?h'(Vﬁﬁ]
0 = V-h + The(xE).
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William Marvyn Pezzaglia Jr. (1953-207?)

+/=7?

Muiltivector Aggregates

[ propose the following “pan-dimensional” metaprinciples:

* (1) Relative Dimensionalism: Dimension is in the eye of the
beholder. The geometric rank that an observer assigns (o an
object (e.g. bivector) is a function of the observer’s frame

* (2) Polydimensional Isotropy: There is no absolute “direction”
to which one can assign the geometry of a vector.

* (3} Dimensional Democracy: The laws should be multivectorial
i form (having scalar, vector, bivector, parts). Every geometric
piece of the equation must be physically realized. Each element
of geometry has an associated coordinate.

* (4 Metamorphic Covariance: The laws of physics should be
form invariant under local automorphism transformations which
reshuffle the physical geometry (e.g. trade vectors for bivectors).

‘Polydimensional Relativity, a Classical Generalization of hfe Automarphism
Invariance Principle” (1986) (hitp:/hocx.lanl. gov/absigr-qo/Ss08052)
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V. Epagogy

* Aesthetics

— I cannot believe that anything so ugly as the multiplication
of matrices is an essential part of the scheme of nature -Sir
Arthur Eddington

— "Beware of Quaternions! They are seductive sirens, always
holding out the promise of new and alluning visions of
beauty. Remember that many have lost their wits or at least
(like 1 did) several vears of their lives in their service. Just
when you think you have reached their promised treasure,
they slip away”. - J.M. Jauch (1973) in a letter warning J.
D. Edmonds he was “locked in their clutches™.

— Letter from Hamilton (to Tait) April 12, 1859: “Could
anything be simpler or more satisfactory? Don’t you feel,
as well as think, that we are on a right track, and shall be
thanked hereafter? Never mind when”.

* Pragmatic.

- “Anyone who has ever used any other parametrization of
the rotation group will, within hours of taking up the
quaternion parametrization, lament his or her misspent
yvouth” -Simon L. Altmann, Rotations, Quaternions, and
Double Groups (1986), p.28.

—  May 1893, A, Maclarlane (student of Tait) supports Gibbs
& Heaviside's postive square of the vector, calling the
others “the minus men”. He makes the pragmatic
statement: “Thus, the mathematical structure of physics
shouldbe dependent on the needs of physics, rather than
being imposed from outside™.
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